Lipidomics

LipidCCS Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics

The use of collision cross-section (CCS) values derived from ion mobility–mass spectrometry (IM–MS) has been proven to facilitate lipid identifications. Its utility is restricted by the limited availability of CCS values. Recently, the machine-learning algorithm-based prediction (e.g., MetCCS) is reported to generate CCS values in a large-scale. However, the prediction precision is not sufficient to differentiate lipids due to their high structural similarities and subtle differences on CCS values. To address this challenge, we developed a new approach, namely, LipidCCS, to precisely predict lipid CCS values.

LipidIMMS Analyzer integrating multi-dimensional information to support lipid identification in ion mobility—mass spectrometry based lipidomics

Ion mobility—mass spectrometry (IM-MS) has showed great application potential for lipidomics. However, IM-MS based lipidomics is significantly restricted by the available software for lipid structural identification. Here, we developed a software tool, namely, LipidIMMS Analyzer, to support the accurate identification of lipids in IM-MS. For the first time, the software incorporates a large-scale database covering over 260 000 lipids and four-dimensional structural information for each lipid [i.e. m/z, retention time (RT), collision cross-section (CCS) and MS/MS spectra]. Therefore, multi-dimensional information can be readily integrated to support lipid identifications, and significantly improve the coverage and confidence of identification. Currently, the software supports different IM-MS instruments and data acquisition approaches.