MetDNA characterizes initial seed metabolites using a small tandem spectral library, and utilize their experimental MS2 spectra as surrogate spectra to annotate their reaction-paired neighbor metabolites which are subsequently served as the basis for recursive analysis.


We developed an interactive web server, namely, MetFlow, to provide an integrated and comprehensive workflow for metabolomics data cleaning and differential metabolite discovery.

Normalization and integration of large-scale metabolomics data using support vector regression

Untargeted metabolomics studies for biomarker discovery often have hundreds to thousands of human samples. Data acquisition of large-scale samples has to be divided into several batches and may span from months to as long as several years. The signal drift of metabolites during data acquisition (intra- and inter-batch) is unavoidable and is a major confounding factor for large-scale metabolomics studies. We aim to develop a data normalization method to reduce unwanted variations and integrate multiple batches in large-scale metabolomics studies prior to statistical analyses. We developed a machine learning algorithm-based method, support vector regression (SVR), for large-scale metabolomics data normalization and integration. An R package named MetNormalizer was developed and provided for data processing using SVR normalization. After SVR normalization, the portion of metabolite ion peaks with relative standard deviations (RSDs) less than 30 % increased to more than 90 % of the total peaks, which is much better than other common normalization methods. The reduction of unwanted analytical variations helps to improve the performance of multivariate statistical analyses, both unsupervised and supervised, in terms of classification and prediction accuracy so that subtle metabolic changes in epidemiological studies can be detected. SVR normalization can effectively remove the unwanted intra- and inter-batch variations, and is much better than other common normalization methods.

Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS

Introduction: Previous metabolomics studies have revealed perturbed metabolic signatures in esophageal squamous cell carcinoma (ESCC) patients, however, most of these studies included mainly late-staged ESCC patients due to the difficulties of collecting the early-staged samples from asymptotic ESCC subjects. Objectives This study aims to explore the early-staged ESCC metabolic signatures and potential of serum metabolomics to diagnose ESCC at early stages. Methods: Serum samples of 97 ESCC patients (stage 0, 39 cases; stage I, 17 cases; stage II, 11 cases, stage III, 30 cases) and 105 healthy controls (HC) were enrolled and randomly separated into training data (77 ESCCs, 84 HCs) and validation data (20 ESCCs, 21 HCs).